Fluidity Onset Analysis in FG Thick-Walled Spherical Tanks under Concurrent Pressure Loading and Heat Gradient

Authors

  • A. Parvizi Assistant Prof., Department of Mechanical Engineering, Tehran University, Tehran, Iran
  • M. Askari - MSc Student, Department of Mechanical Engineering, Science & Research Branch, Islamic Azad University, Tehran, Iran
  • Sh. Ali Karami MSc Student, Department of Mechanical Engineering, Science & Research Branch, Islamic Azad University, Tehran, Iran.
Abstract:

In this paper,fluidity onset analysis in FG thick-walled spherical tanks under concurrent pressure loading and heat gradient has been presented. Designing thick-walled spherical tanks under pressure as tanks holding fluids under heat loads with high heat gradients require new approaches. Under high internal pressure and high temperature, the tank enters the plastic stage in a part of its thickness; hence, for designing, a tank, which necessitates the onset of fluidity, is required for pressure study and heat gradient. Elasticity module, tensile yield, heat flow coefficient and heat expansion coefficient change gradually and, according to the power model, along radial direction. In order to describe the material behavior in the plastic area in the FG thick-walled spherical tank under internal pressure and heat gradient, Treska yield index has been used, and materials’ behavior has been assumed to be in elastic-plastic form.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Exact Elasticity Solutions for Thick-Walled FG Spherical Pressure Vessels with Linearly and Exponentially Varying Properties

In this paper, exact closed-form solutions for displacement and stress components of thick-walled functionally graded (FG) spherical pressure vessels are presented. To this aim, linear variation of properties, as an important case of the known power-law function model is used to describe the FG material distribution in thickness direction. Unlike the pervious studies, the vessels can have arbit...

full text

Spreading of Plastic Zones in Functionally Graded Spherical Tanks Subjected to Internal Pressure and Temperature Gradient Combinations

Thermo-Elasto-Plastic analyses of thick-walled spherical tanks made of functionally graded materials are investigated analytically. These tanks are subjected to positive or negative temperature gradient and internal pressure loadings separately or simultaneously. The power law modeling has been used for through-the-thickness variation of mechanical properties. von Mises yield criterion and Elas...

full text

elasto-plastic analysis of thick walled tanks subjected to internal pressure

in this article, the elasto-plastic analysis of thick walled fg tanks subjected to internal pressure is elaborated. today, thick walled tanks containing liquids with high pressure are used in the chemical industries. the high internal pressure causes part of the thickness of reservoir to yield; therefore, we need the elasto-plastic analysis. in this study, elasto-plastic behavior of fg cylindri...

full text

Asymmetric bifurcations of thick-walled circular cylindrical elastic tubes under axial loading and external pressure

In this paper, we consider bifurcation from a circular cylindrical deformed configuration of a thick-walled circular cylindrical tube of incompressible isotropic elastic material subject to combined axial loading and external pressure. In particular, we examine both axisymmetric and asymmetric modes of bifurcation. The analysis is based on the three-dimensional incremental equilibrium equations...

full text

Effect of Material Gradient on Stresses of Thick FGM Spherical Pressure Vessels with Exponentially-Varying Properties

Using the Frobenius series method (FSM), an analytical solution is developed to obtain mechanical stresses of thick spherical pressure vessels made of functionally graded materials (FGMs). The cylinder pressure vessel is subjected to uniform internal pressure. The modulus of elasticity is graded along the radial direction according to power functions of the radial direction. It is assumed that ...

full text

Effect of Material Gradient on Stresses of FGM Rotating Thick-Walled Cylindrical Pressure Vessel with Longitudinal Variation of Properties under Non-uniform Internal and External Pressure

The present paper provides a semi-analytical solution to obtain the displacements and stresses in a functionally graded material (FGM) rotating thick cylindrical shell with clamped ends under non-uniform pressure. Material properties of cylinder are assumed to change along the axial direction according to a power law form. It is also assumed that the Poisson’s ratio is constant. Given the exist...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  57- 49

publication date 2014-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023